DEVELOPER’s BLOG

技術ブログ

人間が騙されているフェイクニュースをAIが見破れるか?

2020.03.26 竹中 涼香
コラム 機械学習 自然言語処理
人間が騙されているフェイクニュースをAIが見破れるか?

フェイクニュースは珍しいものではありません。
コロナウイルスの情報が凄まじい速さで拡散されていますが、その中にもフェイクニュースは混ざっています。悪意により操作された情報、過大表現された情報、ネガティブに偏って作成された情報は身近にも存在しています。
これらによって、私たちは不必要な不安を感じ、コロナ疲れ・コロナ鬱などという言葉も出現しました。

TwitterやInstagramなどのソーシャルメディアでは嘘みたいな衝撃的なニュースはさらに誇張な表現で拡散され、フェイクニュースは瞬く間に広がります。嘘を見破るのは難しく、見破られないまま多くの人に「正しい情報」として届けられています。
2017年に『Journal of Economic Perspectives』誌に掲載された記事では、アメリカの成人の62%がソーシャルメディア上でニュースを得ており、フェイクニュースサイトへの訪問は41.8%がソーシャルメディアのリンクを経由していることが示されています。

フェイクニュースの無い世界ではじめて、私たちは正しい情報に触れ健全な判断をすることができます。
しかし、膨大な情報が混在するソーシャルメディア上でフェイクニュースを発見する作業は人間が行うにはコストがかかりすぎるため現実的ではありません。

AIはフェイクニュースを発見できないでしょうか。


AIはフェイクニュースを発見できる?

ソーシャルメディアの登録者数が世界的に増えているにも関わらずソーシャルメディアのプラットフォームもこの新興市場に投資していないようで、技術検証に留まっています。

革新的なスタートアップが出現するかどうかは出資の有無にかかっているでしょう。 今後、ソーシャルメディアの世界を牽引するためにフェイクニュース検出への投資が出現するのではないでしょうか。

商品化はされていませんが、技術検証は進んでいます。


FEVERによる情報の正誤判定

マサチューセッツ工科大学では、Facebookが支援している研究者がフェイクニュースを発見するためにFEVER(Fact Extraction and Verification)を利用しています。 ※FEVER:大規模なファクトチェックのためのデータベース

しかし、FEVERでさえもバイアスがあり思うようにフェイクニュースを発見できていません。

FEVERは機械学習の研究者たちによって、ウィキペディアの記事を元に、情報に対して正誤を判定するために利用されてきました。しかし、そのデータセットにバイアスがありそれで学習したモデルが誤った結果を導いてしまったと研究チームは分析しています。

例えば、'did not''yet to'のような否定のフレーズが含まれた文章は「偽」の場合が多いため、FEVERで訓練されたモデルは、これらの文が実際に真実であるかどうかに関係なく、偽と判定してしまう可能性が高いことが課題です。

真実である"Adam Lambert does not not hide publicly his homosexuality "は、AIに与えられたデータから真実と導けるにもかかわらず、否定のフレーズが入っているので偽とされる可能性が高いです。

判定の根拠に主張の言語(どんなフレーズが入っているか)に焦点を当てており、外部の証拠(実際はどうであるか?)を考慮に入れていないことが問題でしょう。

証拠を一切考慮せずに主張を分類することのもう一つの問題点は、全く同じ主張が今日は真であっても、将来的には偽であると考えられる可能性があるということです。 例えば、女優のオリビア・コルマンがオスカーを受賞したことがないというのは2019年までは本当でしたが、現在では違います。情報は常に更新されていくのです。

これらの課題解決のため、研究チームはFEVERのバイアスを解消し一部を修正するデータセットを作成しています。


計算言語学と機械学習のハイブリッド手法

2018年に発表されたミシガン大学とアムステルダム大学の論文は、効果的にフェイクニュースと戦うために、計算言語学とファクトチェック(事実検証)を組み合わせるアイデアを発表しました。

計算言語学では、自動化された方法でフェイクニュース発見を実施できます。 本物と偽物のニュースを区別するために、言語学的特徴に注目してニュース内アイテムの語彙的、構文的、意味的なレベルを見て判断します。

開発されたシステムの性能は、このタスクにおいて人間の性能に近く、最大76%の精度でフェイクニュースを発見することができました。

しかし、考慮するのは言語学的特徴だけではなく、事実検証の要素も含めるべきと指摘されています。 例えば、記事へのリンク数やコメントなどのメタ特徴や、ニュースページの見栄えなどのモダリティ的な特徴のことです。これらは機械学習でアプローチすることができます。

これらを踏まえて今後の研究では、計算言語学や事実検証(AI・機械学習)のアプローチをハイブリッドにした予測と意思決定が必要だと考えられます。


実現に向けた課題

これらの例を見ただけでも課題があることがわかります。
イノベーターたちは様々な角度から問題を考えてきましたが、思うような改善には至っていません。

どちらの例でも言及されていない課題があります。
フェイクニュースがどのように作られているかご存知ですか。現在はAIがかなり精巧に作成していますが、問題は人間の作るフェイクニュースです。AIはルールに従ってフェイクニュースを作成するため、私たちも対抗することができますが、人間が作成したニュースを見破るためには難易度が一気に上がります。


たとえば、Twitter。


多くの情報を拡散したい時にTwitterは効果的なツールです。
Twitterでフェイクニュースを拡散したい時、複数のBotで自動投稿するでしょう。Botは単に「いいね!」や「フォロー」数を増やしたり、リンクを拡散したり、トレンドに入るために多くの投稿をしたり、反対派を荒らしたりするために構築されます。このように自動化されたアカウントの大部分は非常に単純なもので発見しやすく現在の技術でも対応できるでしょう。

これだけの対策でも、拡散されるフェイクニュースの効果を弱めることができます。 悪意のある情報の拡散は私たちの気持ちを落ち込ませるだけでなく、健全な判断をも奪います。

スクリーンショット 2020-03-26 16.52.10.png


フェイクニュース発見に尽力すべきは誰?

このようなソーシャルメディア上のフェイクニュースの発見は誰が行うべきでしょうか。

FacebookやGoogleなどは暴力やテロリストグループの情報を含むコンテンツの発見には投資していますが、フェイクニュースの発見にはそれほど熱心ではないようです。理由は先程のようにオンライン上には様々な表現、文脈で存在し、AIが独自に発見するは難しいためでしょう。 しかし、今後さらに大量のコンテンツが溢れ、有益な情報のみ吟味するためにはフェイクニュースを発見することは必須ではないでしょうか。


市場のチャンス?

今後、ソーシャルメディアのプラットフォームを牽引する企業は出現するでしょう。
利用ユーザー数を増やし、市場を獲得しするためにはユーザーの安全が確保されることが大切です。子供には使わせられないソーシャルメディアは大人も使いたくないですよね?

ソーシャルメディアの登録者数が世界的に増えているにも関わらず、どのソーシャルメディアのプラットフォームもフェイクニュースの発見に積極投資はしていないようで、技術検証に留まっています。

しかし、より安全で健全な世界のためにこの技術は凄まじい進歩を遂げていくのではないでしょうか。


Twitter・Facebookで定期的に情報発信しています!

関連記事

SREでSEOの最適化ができるのか!?:サイト運営の新たな(新技術)視点

はじめに SREとSEOの重要な関連性 技術的アプローチ:SREによるSEO改善の戦略 まとめ 1.はじめに 最近、Googleが「Core Web Vitals」を検索アルゴリズムの重要な指標として組み込んだことで、サイトのパフォーマンスや信頼性などSEOに与える影響が一層注目されるようになりました。これまで、マーケティング部としてSEO対策といえばキーワードやコンテンツの最適化が主な取り組みでしたが、それだけでは十分ではない時代に突入

記事詳細
SREでSEOの最適化ができるのか!?:サイト運営の新たな(新技術)視点
SRE コラム
システム運用の未来を変える!SREのメリットとは?

はじめに SREとは? SREのメリット SREのデメリットと対策 まとめ 1.はじめに 現代のITシステムにおいて、システムの信頼性は企業にとって最も重要な要素の一つです。サービスの停止や障害は、顧客満足度の低下や収益損失に直結するため、システムを安定して稼働させることが求められています。しかし、システムの複雑化や運用業務の負担増加により、信頼性を確保するのは容易ではありません。 この課題を解決するために注目されているのが、SRE(

記事詳細
システム運用の未来を変える!SREのメリットとは?
SRE コラム
SREとは何か? システム運用から顧客体験を向上させる秘訣

はじめに システムの健康診断を超えて:SREの価値とは? SREがもたらす「攻め」の価値:エラーバジェットの考え方 顧客体験向上に直結するSREの役割 総合診療としてのSRE:ビジネスとシステムの架け橋 SREの未来:システム運用を超えた価値創造 まとめ 1.はじめに SRE(Site Reliability Engineering)は、単なるシステム運用の効率化や信頼性向上に留まりません。ビジネスの要求に応えつつ、顧客体験を

記事詳細
SREとは何か? システム運用から顧客体験を向上させる秘訣
SRE コラム
【Redshift vs. BigQuery】「運用性でRedshift」という選び方

.blue-link, .blue-link:visited { color: blue; } 目次 結局、何が違うのか? Redshiftの運用性 1. AWS上の対向システムとの統合容易性 2. 機械学習ベースの管理タスク自動化 3. Glue/Lake Formation による一元的なメタデータ・アクセス権限管理 まとめと次回予告 出典(いずれも記事公開時点閲覧) 結局、何が違うのか? こんにちは、アクセルユニバ

記事詳細
【Redshift vs. BigQuery】「運用性でRedshift」という選び方
AWS コラム データ分析

お問い合わせはこちらから