DEVELOPER’s BLOG

技術ブログ

kaggleコンペNFL Big Data Bowl で銅メダル獲得!勝因は「特徴量エンジニアリング」

2020.01.07 竹中 涼香
kaggle 機械学習
kaggleコンペNFL Big Data Bowl で銅メダル獲得!勝因は「特徴量エンジニアリング」

アクセルユニバース株式会社(以下当社)では、人が対応している業務を画像認識、音声認識、文字認識等を活用して効率化する機械学習ソリューション開発をおこなっています。


インターン生は業務の一環としてkaggleに取り組んでおり、先日のNFL Big Data Bowlコンペにて銅メダルを獲得しました。
こちらのコンペは、アメリカンフットボールのランプレイにおいて、攻撃側が進むヤード数を予測するコンペです。


メダル獲得した小野くんのコメントです。
ーーー
主な勝因は特徴量エンジニアリングの部分だと考えています。
調子に波があるだろうと考えたので選手やチームの情報は極力使わず、選手の位置情報や進行方向のベクトルを用いて様々な切り口で特徴量を作ることに注力しました。

その他、今回はカーネルコンペであったため、以前よりコーディング力がつき、メモリやコードの実行時間に対する意識も増しました。
また過学習を防ぐことの重要性を再認識しました。
ーーー


現在、解法を詳しく解説したものを公開できるように準備を進めています。


その他当社インターンでは論文のまとめ記事論文 Attention Is All You Need から Attentionモデルの解説を書いたり、実際にTensorFlowでVGG19を使ったインスタ映え画像の生成実装をしています。 随時紹介していくので是非ご覧ください!


Twitter・Facebookで定期的に情報発信しています!

関連記事

Kaggleバスケコンペ(NCAA)解法の紹介

NCAAコンペ概要  全米大学体育協会バスケットボールトーナメントの試合の勝敗を予測するコンペでした。男女別にコンペが開かれました。リーグ戦の試合結果の詳細とトーナメントの試合結果のデータが年ごとに与えられ、今年のトーナメントの試合結果を予測します。評価指標はLoglossでした。 結果  新型コロナウイルスの影響で、大会自体がキャンセルになってしまいました。リークなしのLBの最も良いスコアは0.52586です。 取り組み内容 コンペの内容を理解してから

記事詳細
Kaggleバスケコンペ(NCAA)解法の紹介
kaggle 機械学習
Kaggleコンペ 2019 Data Science Bowlの振り返り

はじめに 昨日まで開催されていたKaggleの2019 Data Science Bowlに参加しました。結果から言いますと、public scoreでは銅メダル圏内に位置していたにも関わらず、大きなshake downを起こし3947チーム中1193位でのフィニッシュとなりました。今回メダルを獲得できればCompetition Expertになれたので悔しい結果となりましたが、このshake downの経験を通して学ぶことは多くあったので反省点も踏まえて

記事詳細
Kaggleコンペ 2019 Data Science Bowlの振り返り
kaggle 回帰 機械学習
Kaggle解説: 銅メダル獲得 NFLコンペについて

はじめに KaggleのNFLコンペで2038チーム中118位となり、銅メダルをとることができました。以下に、参加してからの取り組みや、反省点を書いていきたいと思います。 コンペ参加前の状況 10ヶ月ほど前にTitanicコンペに参加してから、「Predicting Molecular Properties」と「IEEE-CIS Fraud Detection」というコンペに参加してみましたが、公開されているカーネルを少しいじってみた程度でメダルには到底届

記事詳細
Kaggle解説: 銅メダル獲得 NFLコンペについて
kaggle 機械学習
KaggleコンペGreat Energy Predictor III で銅メダル獲得!

アクセルユニバース株式会社(以下当社)では、人が対応している業務を画像認識、音声認識、文字認識等を活用して効率化する機械学習ソリューション開発をおこなっています。 インターン生は業務の一環としてKaggleに取り組んでおり、先日のASHRAE - Great Energy Predictor IIIにて銅メダルを獲得しました。 メダルを獲得した田村くんのコメントです。 今回は、他の方が提出したもののブレンド(混ぜる)の仕方を工夫しました。 まずはなるべ

記事詳細
KaggleコンペGreat Energy Predictor III で銅メダル獲得!
kaggle 機械学習

お問い合わせはこちらから